Characteristics of Ice Wine Fermentation of Freeze-Concentrated Campbell Early Grape Juice by S. cerevisiae S13 and D8 Isolated from Korean Grapes

Sung-Woo Hwang¹, Young-Ah Hong¹ and Heui-Dong Park¹,²,*
¹School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
²Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 702-701, Korea

포도로부터 분리한 S. cerevisiae S13 및 D8에 의한 캠플 얼리 동결농축 과즙의 아이스와인 발효 특성

황성우¹・홍영아¹・박화동¹,²,*
¹경북대학교 식품공학과 식품생물공학전공, ²경북대학교 발효생물공학연구소

Abstract

Cryextraction (a freeze concentration using an instrument) can increase the sugar concentration in grape juice by reducing its water content, similar to the natural freezing of grapes for natural ice wine. In this study, fermentation of freeze-concentrated Campbell Early grape (Vitis labruscana) juice to 36 ⁰Bx was carried out using Saccharomyces cerevisiae strains D8 and S13 isolated from Korean grapes. During the fermentation, strains S13 and D8 showed rapid sugar reduction and alcohol production compared with S. cerevisiae Fernavin⁶ used as a control. After nine-day fermentation, the residual sugar contents were lower in W13(9.7%) and D8 wine(9.07%) than that in Fernavin⁶ wine(14.0%). Total acid content was high in the D8 wine and lowest in the Fernavin⁶ wine, among the three. The methanol content was slightly higher in the S13 and D8 wines than in the Fernavin⁶ wine. In the sensory evaluation, the S13 wine exhibited the highest score in flavor and taste among the three wines. Both the two S13 and D8 wines exhibited higher scores than Fernavin⁶ wine in overall preference.

Key words : Campbell Early; freeze-concentration; grape; ice wine; wine yeasts

서 론

우리나라의 포도 재배 지역은 최저 온도가 섭씨 15도 이상인 지역으로 규봉, 경상, 경동, 경북, 전남 및 전라 등에 분포되어 있으며 그 중 경북지역이 약 50%를 차지하고 있다. 포도 종류는 조생종인 캠플 얼리(Campbell Early, Vitis labruscana)가 전체 포도 재배 면적의 69.9%인 7,900 ha에서 재배되며, 중산종인 기봉, 니오미에스, 볼란데어, 폼도스abet, 레슬링, 포 오내 및 블랙플럼과아 등은 22.6%인 2,500 ha에서 재배되고 있다. 중산종인 다노레드, 머스ters 베일리 A 및 폼도스abet 등의 재배 면적은 4.3%인 490 ha이다(1). 포도

*Corresponding author. E-mail : hpark@knu.ac.kr
Phone : 82-53-950-5774, Fax : 82-53-950-6772

- 811 -
수확한 포도로 만든 다크트 와인으로(5) 포도가 동
결되면서 포도 내 유리수는 이온결정으로 변형되어 분리,
이동하여 탄산가스가 냉각되게 된다(6). 아이스와인 제조용 주
스는 32 °Brix에서 46 °Brix 사이의 당도를 가벼게 한다.
우리나라에서는 기후적 환경 때문에 자연 동결 숙축파실
을 얻기 어려울 뿐만으로 인공적으로 파실을 냉각해
야 한다는 실정이다. 동결 숙축은 동결간조를 포함한 다른
동적공정보다 포도주의 희석성 향기성분의 변화와 폐
농성 화합물들의 양에 의한 손상을 최소화 할 수 있다(7).
고농도의 농축된 아이스와인 발효에서 와인효모는 발효과
정 중 상당수 스트레스, 대사, 문제, 생육과 발효의 어려움을
발생하여 발효에 많은 문제를 발생시킨다(8, 9). 본 연구는
동결농축을 이용하여 36 °Brix로 만든 포도즙에 내장성효
모를 첨가하여 발효 특성을 알아보고자 한다.

재료 및 방법

실험재료 및 균주

아이스와인 발효에 사용한 와인 포도는 2010년 7월 하순
경 경북 상주에서 수확한 캠플 일리 포도 중 삼품을 구입하
여 사용하였다. 포도 비율에 따라 -20°C에서 보관하면서 사용
하였다. 실험을 위해 동결 농축한 당도는 36 °Brix로 맞추
았다. 또한 본 실험에 사용한 균주는 정밀대교하게 식품공학
과 마신물공학실에 보관하고 있는 대장성의 효모 S.
cerevisiae D8, S. cerevisiae S13과 대조군으로서 의학외
모인 S. cerevisiae Ferminv (DSM Food Specialties, Delft,
The Netherlands)를 사용하였다. 효모의 균주를 얻기 위하
여 YPD 배지를 사용하여 30°C에서 24시간 배양한 후 형성된 콜로니를 계수
하였다.

아이스와인의 제조

아이스와인의 제조는 원료인 캠플 엘리 포도, 재료 및
제조한 포도 찼첩하였던 potassium metabisulfite (K2S2O5)를
200 ppm 첨가하여 -20°C에서 동결 농축기를 사용하여 포도
즙의 최종 당도를 36 °Brix가 되도록 동결 농축하여 36 °Brix
인 포도즙과 5 L 발효용기에 넣은 후 D8, S13 및 Ferminv
종류를 주입하여 첨가하여 동절 농축된 포도즙 2
L씩을 발효용기에 넣고 D8, S13 및 Ferminv 균주를 YPD
배지에서 배양하여 각각 5% 점포하여 발효실의 온도를
20°C로 유지하여 발효를 진행시켰다. 발효시기의 소산
액의 저축과 양액을 트로코시에 담긴 것으로
판단된 후 발효를 종료하였다.

아이스와인의 발효 특성 분석

아이스와인의 총산은 AOAC 방법(10)에 따라 아이스와
인의 술액을 어떠한 양을 얻어 얻은 양을 0.1 N NaOH로 정량하여
주석으로 산화하였으며, pH는 pH meter (Mettler Toledo
Co Model 340, Schwerzenbach, Germany)를 이용하여 측정
하였다. 당도의 측정은 아이스와인 발효액을 원심분리
(8,000 rpm, 10 min)하여 얻은 성정액을 당도계 (Atago, Japan),
을 사용하여 측정하였다. 그리고 당도의 측정은 당도
액 80 mL에 증류수 20 mL를 첨가하고 증류하여 80 mL의
증류액을 얻은 다음 이 증류액을 주정액으로 측정한 값을
Cay Lussac 표를 이용해 15°C로 온도 보정하여 산화하였다
(10). 원산화 당량의 측정은 DNS (Dinitrosaliciclylic acid)법
(11)에 따라 측정하였다. 즉 시료 1.0 mL에 DNS 시약 3.0
mL을 첨가하여 95°C에서 5분간 반응시킨 다음 증류액을
21 mL를 첨가한 후 분광광도계 (Shimadzu Co UV-1601,
Kyoto, Japan)를 사용하여 550 nm에서 흡광도를 측정하고
포도주 표준곡선으로부터 원산화 당량을 할산하였다.

 효모 생균수 측정

아이스와인 발효과정 중의 효모수의 변화는 발효 중인
아이스와인의 술액을 밀균 생리시험수로 적징한
약 0.5 톤 평균 계수법을 이용하여 YPD 고체배지에 도발
한 다음 30°C에서 24시간 배양한 후 형성된 콜로니 계수
하였다.

총 플리페놀 화합물의 측정

총 플리페놀화합물의 당량 측정은 Folin-Denis법(12)에
의해 비색 정량하였다. 아이스와인 와인액 2 mL에 50%
phenol reagent (Folin-Ciocalteu’s reagent) 2 mL를 첨가하여
3분 동안 실온에서 반응한 후 10% Na2CO3 용액 2 mL를
첨가하여 실온에서 1시간 반응한 다음 분광광도계를 사용
하여 700 nm에서 흡광도를 측정하였다. 총 플리페놀화합
몰의 양은 tannic acid를 표준결제로 사용하여 할산하였다.

아세트알데히드 및 미량 알코올의 정량

아이스와인의 아세트알데히드 및 미량 알코올의 정량은
gas chromatograph (GC)를 이용하여 분석하였다. 시료를
정유하여 다음 0.45 μm membrane filter로 여과 후 분석하였으
며 GC 조건은 Table 1과 같다(13). 각 피크의 동장은 표준품
의 retention time과 비교하였고 함량은 피크의 면적으로
계산하였다.

색도 측정

아이스와인을 이용하여 420 nm과 520 nm에서 흡광도를
측정하였다. 포도주의 Hue는 420 nm/520 nm의 비율로
Intensity는 420 nm과 520 nm의 합으로 나타났다(14). 색도
는 Colorimeter (Minolta RS-232C, Japan)를 이용하여 L, a,
b 값을 측정 하였다(15).

관능검사

아이스와인의 관능검사에는 색, 맛, 향 및 전반적인 기호에
Table 1. Operating conditions of GC for the analysis of acetaldehyde and minor alcohol contents in the wine

<table>
<thead>
<tr>
<th>Item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Hewlett Packard 6890 series II</td>
</tr>
<tr>
<td>Column</td>
<td>HP-FFAP (0.25 mm × 30 m)</td>
</tr>
<tr>
<td>Column temp.</td>
<td>60℃(4 min) → 210℃(6℃/min) → 210℃(2 min)</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>He</td>
</tr>
<tr>
<td>Injection volume</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>Make-up gas</td>
<td>N₂, 30 mL/min</td>
</tr>
<tr>
<td>Detector</td>
<td>Flame Ionization Detector (FID)</td>
</tr>
<tr>
<td>Injector temp.</td>
<td>190℃</td>
</tr>
<tr>
<td>Detector temp.</td>
<td>200℃</td>
</tr>
<tr>
<td>Split ratio</td>
<td>100 : 1</td>
</tr>
</tbody>
</table>

d하여 칠공대로서 식품공학과 학생 중 본 실험이 관심
있는 판문요인 20평을 선정하였다. 참고 기간, 저작 년도로
5단계 기호로 하여 범위별로 실험하였다(16). 이때 판문요인
은 5, 대단히 좋다(very good); 4, 약간 좋다(good); 3, 보통
이다(fair); 2, 약간 나쁘다(poor); 1, 아주 나쁘다(very poor)
하였다. 모든 데이터는 SAS를 이용한 Duncan의 다중 비교
분석법으로 유의성을 검증하였다(17).

결과 및 고찰

아이스와인의 발효 특성

아이스와인 발효과정 중의 당도와 알코올 농도의 변화는
Fig. 1과 같다. 캐벌 일리 아이스와인의 초기 당도는 36
°Brix로 발효를 시작하였으며 발효가 진행됨에 따라 모든
균주는 비슷한 경향으로 당도가 감소하는 것을 확인 할
수 있으나, S. cerevisiae S13과 D8의 경우 대조균인
Fermivin보다 당도가 다소 빠르게 감소하는 경향을 보였다.

![Fig. 1. Changes in the soluble solids (A) and alcohol contents (B) during fermentation of freeze-concentrated Campbell Early grape juice.](image)

* ; Fermivin, □ ; S13, ▲ ; D8

알코올 생산 역시 균주 S13과 D8이 모두 대조균인
Fermivin보다 빠른 알코올 생산을 보였다. 알코올 생성량은
원료 당 농도의 감소량에 반비례한다(18). 본 실험에서 있어서
두 균주 S13과 D8은 대조균인 Fermivin보다 당도는 빨리
감소하였으며 알코올의 생성은 빠르게 나타났다. 두 균주
간의 차이에 있어서 발효 초기에는 균주 S13과 D8이 유사
한 속도로 알코올을 생성하였으나 발효 5일 이후에는 D8이
다소 S13보다 빠른 알코올 생성능을 나타내었다. 발효 중간
시점인 9일 후의 알코올 농도는 D8이 15.2%로 가장 높았으
며 S13은 14.0%, 대조균인 Fermivin의 경우에는 12.6%로
다소 낮게 나타났다.

발효 중 총산 함량의 변화는 Fig. 2와 같다. 발효 포도
과즙 농축액의 총산 함량은 0.78%로 나타났다. 일반적으로
포도 대 충산은 0.6-0.8%가 적절한 수준으로 알려져 있다
(19). 포도 과즙의 총산 함량은 0.56%로서 당도가 약 2.5배
농축된 것에 비하여 충산 함량이 0.22%밖에 증가하지 않은
것은 동물농축 과정 중 주석산 등 성장량의 유기산이 제거
된 때문인 것으로 추정된다. 발효 완료 후 충산 함량은 대조
균인 Fermivin으로 발효한 포도주의 약 0.82%에 비하여
D8과 S13 포도주에서 각각 0.97, 0.96%로 다소 높게 나타
났다.

![Fig. 2. Changes in the total acid contents during fermentation of freeze-concentrated Campbell Early grape juice.](image)

* ; Fermivin, □ ; S13, ▲ ; D8

Kim 등(20)과 Koh 등(21)은 각각 포도주 초기 발효 시
효모의 생성수가 5.0×10⁵ CFU/mL, 2.0×10⁶ CFU/mL가 되
도록 병도의 효모를 첨가하여 포도주를 발효하는 것이 유리
하다고 보고한 바 있다. 본 연구에서는 이와 유사한 양의
효모를 첨가하여 발효를 행하면서 발효 과정 중 생성수의
변화를 조사한 결과는 Fig. 3과 같다. 효모의 생검수 증가
경향이 일정한 패턴으로 나타나 발효가 정상적으로 일어났
음을 알 수 있었다. 발효 기간 중 모든 균주는 생육이 우수하였으나 발효 초기에는 발효력이 다소 떨어진 S13 균주가 D8, Ferminvin에 비하여 생균수가 다소 높다가 발효 5일 후부터 생균수가 다소 감소하여 발효 중 당도의 감소 및 알코올 농도의 증가 경향을 잘 일으켰다(Fig. 1, 3).

![Fig. 3. Changes in the yeast viable counts during fermentation of freeze-concentrated Campbell Early grape juice.](image)

알데하يد 및 미량 알코올 함량

아세탈알데히드는 알데하يد 종류 중 하나로 알코올이 산화되면서 만들어지고, 술에서 흔히 볼 수 있다. 간 독성, 발암성 등 사람의 건강에 나쁜 영향을 미치는 물질로서 외인의 아세탈알데히드 함량은 식품공정에서 기준을 정하여 관리하고 있는 항목으로 단백질 분해 중간 대사 과정에서 미생물에 의해 생성된다. 본 연구에서 제조한 아이스와인의 아세탈알데히드 함량은 D8 포도주가 81.9 ppm으로 다른 시험군보다 다소 높게 나왔으며 Ferminvin 포도주가 58.8 ppm으로 가장 낮은 수치를 나타냈다. 아세탈알데히드 함량은 다른 시험품에서 식품 공정의 기준치인 700 ppm보다 매우 낮게 나타났다. 메탄올은 파실 중의 pectin methylesterase가 상업을 가속해하여 생성되기 때문에 포도주의 정성을 보완하는 데 이로 인해 사용할 경우 일반과 비슷한 상해를 일으킬 수 있으나, 메탄올 함량은 S13, D8 포도주에서 Ferminvin 포도주보다 다소 높게 나타났으나 식품공정에 명시된 과일주의 메탄올 허용 기준치인 1,000 ppm보다 매우 낮게 나타났다. Fusel oil은 메탄알코올과 같은는 낮고 농도 구간이 상처 수가 많은 저항한 알코올을 충청에서 이는 맥주 주류의 품질을 평가하는 중요한 항목이 되는 성분이며 포도주 제조 중 생성되는 고급 알코올의 양에 따라 flavor의 body 등 포도주 품질에 큰 영향을 미친다(22, 23). 본 연구에서 제조한 아이스와인의 프로필알코올의 함량은 세 균주 포도주 모두 7.1-8.5 μg/mL로 나타났으며 극단 포도주부터 분리한 D8, S13 외에 다른 2만 두는 다소 낮게 나타났다. 이소프로필알코올의 함량은 Ferminvin 포도주가 43.8 μg/mL로 가장 낮은 함량을 보였고 D8 포도주와 S13 포도주가 각각 60.7, 62.4 μg/mL로 나타났으며 이소프로필알코올 함량은 Ferminvin 포도주가 208.4 μg/mL로 가장 높게 나타났으며 D8 포도주가 248.6 μg/mL, S13 포도주가 264.9 μg/mL로 다소 높게 나타났다(Table 3).

| Table 2. General properties of the wine after fermentation of freeze-concentrated Campbell Early grape juice |
|---|------------|------------|------------|
| Item | Ferminvin | D8 | S13 |
| Alcohol (%) (v/v) | 12.6 | 12.2 | 14.0 |
| Soluble solids (Brix) | 21.4 | 20.0 | 20.0 |
| Reducing sugar (%) | 14.0 | 9.07 | 9.77 |
| Total acid (%) | 0.82 | 0.97 | 0.96 |
| pH | 3.67 | 3.65 | 3.65 |
| Total polyphenol (%) | 0.29 | 0.32 | 0.33 |

| Table 3. Contents of acetaldehyde and minor alcohols in the wine after fermentation of freeze-concentrated Campbell Early grape juice |
|---|------------|------------|
| Strain | Acetaldehyde | Methanol | Propyl alcohol | iso-Butyl alcohol | iso-Amyl alcohol |
| Ferminvin | 58.8 | 154.6 | 8.1 | 43.8 | 208.4 |
| D8 | 81.9 | 163.7 | 7.5 | 60.7 | 248.6 |
| S13 | 75.6 | 163.7 | 7.1 | 62.4 | 264.9 |
색도
포도주의 색도와 감면도를 알아보기 위해 Hue 값과 Intensity 값 그리고 Hunter의 색도값을 측정한 결과는 Table 4와 같다. 적포도주는 홍포도의 520 nm과 420 nm의 두께 홈수치와 극소 홈수치를 나타낸다(24). 홍포도 420/520 nm로 표시되는 Hue 값은 포도주의 감면도와 포도주의 광택, 윤기와 관련이 있는 것으로 알려져 있다(25). 미숙 적포도주의 일반적인 Hue 값은 0.5 부근이며 과도하게 상관된 경우 1.0 이상이 된다(26). 본 연구 결과 포도주의 Hue 값은 1.02-1.03으로 나타나 1.0 이상의 값을 나타내었다. Intensity 값은 변이가 진행될수록 증가하는 경향을 보이며, 1.0 이상의 값을 나타내면 적포도주로 적합하지 않다고 알려져 있다(27). 본 연구에서 제조된 아이스와인의 Intensity를 측정한 결과 모든 실험에서 3.50-3.52 정도로 높게 나와 이것이 일반에 의해 높은 흩의 이상이 아니라 동일 동족에 의해 높게 나온 것으로 추정된다. 포도주를 통과할 때 중요한 항목 중 하나는 색도는 품질을 평가한 후 저의 요소로 여겨진다고 하였지만 색도반응 등은 색상표현이 뚜렷하고, 혹은 색상표현도 예측될 수 있는 지표가 되기 때문이다(28). 발효 후 포도 주의 L 값은 펼실 러일 일부 포도주의 경우에는 약 29.1로 보고된 바 있다(29). 그러나 본 연구에서는 제조된 아이스와인의 L 값은 6.98-6.99로 매우 낮게 나타났다. 포도주의 색도는 총 폐쇄함량, 미생물의 분화, SO2 등 여러 가지 요인에 의해 영향을 받게 된다(29) 본 연구에 있어서 이와 같은 현상은 동일에 의한 포도 파 isAuthenticated 농축으로 세포 적식 동족에 중독된 상태로 추정된다. 본 연구에서 제조된 아이스와인의 a 값은 18.46-18.90으로 나타나 일반 포도주에서 이 값(29)보다 높은 17.0과 영향한 값을 나타내었다. a 종류 아이스와인의 a 값은 4.37-4.54로서 일반 포도주에서 보고된 2.09(29)에 비해 매우 높게 나타났다. 이는 일반 포도주의 a값에 비해 2.5배의 a값을 얻기 위한 동물농축 과정을 거쳐 발효된 아이스와인이 반영 빛의 감각은 세균에서 바탕으로 여겨진다.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Color</th>
<th>Flavor</th>
<th>Overall acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernimin</td>
<td>3.88</td>
<td>3.50</td>
<td>3.38</td>
</tr>
<tr>
<td>D8</td>
<td>3.88</td>
<td>3.25</td>
<td>3.20</td>
</tr>
<tr>
<td>S13</td>
<td>3.88</td>
<td>3.75+</td>
<td>3.63</td>
</tr>
</tbody>
</table>

* a, b, c represent scores within a row followed by the same superscript are not significantly different at 5% level using Duncan’s multiple range test. Sensory evaluation was conducted by 10 members of panel using scoring difference test and sensory scores were 5, excellent; 3, fair; 1, very poor.

요약
국산 펼실 러일 포도파우름은 36°Brix로 동일농축한 후 국산 포도주로 이루어진 S. cerevisiae S13, D8 포도주를 이용하여 아이스와인의 발효를 행하면서 대조군주인 S. cerevisiae Fernimin과 발효특성을 비교하였다. 발효 후 S13과 D8의 경우 Fernimin보다 당도가 다소 빠르게 감소하였으며 빨른 알코올 생성성을 보였다. 발효 종료 시점인 9일 후의 알코올 농도는 D8의 15.2%, S13의 14.0%, Fernimin은 12.6%를 나타내었다. 자연 환원성의 항염은 Fernimin 포도주가 14.0%로 가장 높았으며 D8 포도주는 9.07%, S13 포도주는 9.77%로 나타났다. 총산 함량은 Fernimin 포도주가 1.08%에 비하여 D8과 S13 포도주에서 각각 0.97, 0.96로 다소 높게 나타났으며 pH는 모든 포도주에서 3.65-3.67로 유의적인 차이가 있었다. 아세트알데히드는 D8 포도주가 81.9 ppm로 다소 높았으며 Fernimin 포도주가 58.8 ppm으로 가장 높았다. 미량을 함량은 S13, D8 포도주가 Fernimin 포도주보다 다소 높았으나 결과주의 표준을 허용 기준치보다는 매우 높았다. L 값은 6.98-6.99로 일반포도주에 비해 매우 낮게, b 값은 4.37-4.54로 매우 높게 나타났다. 아이스와인의 항염과 S13 포도주가 가장 높은 접수를 받았으나 일반적인 기호도는 D8과 S13 포도주가 Fernimin 포도주보다 높은 접수를 받았다.

감사의 글
이 논문은 농촌진흥청 농가생활지원 이용기술과제
참고문헌