Production of D-sorbitol and L-sorbose from Jerusalem artichoke by *Zymomonas mobilis* and *Glucobacter suboxydans*

Uck Han Chun, Won Keuk Kim, *Dong Wook Cho, In Chul Kim and **Sang Ki Rhee*

Department of Food Technology and Science, Kyung Hee University, Suwon 449-701, Korea
*Korea Food Research Institute
**Lab. of Metabolic Engineering, Genetic Engineering Research Institute, Taejon 305-606, Korea

ABSTRACT

The use of Jerusalem artichoke containing 2-1, 2-fructose oligomer for the production of D-sorbitol and L-sorbose has been studied. The employment of inulinase (0.398%, v/v) for the hydrolysis of 40% (v/w) Jerusalem artichoke juice resulted in 36.7 g/l of glucose and 85.3 g/l of fructose at 50℃. These sugars were utilized as substrates for D-sorbitol and L-sorbose production. Coimmobilization of inulinase and permeabilized cells of *Zymomonas mobilis* in the mixture of chitin (5%, w/v) and x-carrageenan (4%, w/v) resulted in the production of 30.2 g/l of D-sorbitol by using inulin as a substrate. The process of L-sorbose production from D-sorbitol by *Glucobacter suboxydans* was optimized with respect to the substrate concentration, level of dissolved oxygen and gluconic acid concentration. Gluconic acid produced by *Zymomonas mobilis* from glucose was found to inhibit *Glucobacter suboxydans* in conversion of D-sorbitol to L-sorbose. In view of removing such inhibitory effect by gluconic acid, mutants were selected by the NTG (N-methyl-N'-N'-nitro-N-nitrosoguanidine) treated method. Mutants selected by NTG mutagenesis showed no inhibitory effects of gluconic acid against L-sorbose production when its concentration increased up to 100g/l. A mutant produced 40.1g/l of L-sorbose in the medium containing 100g/l D-sorbitol and 100g/l gluconic acid. This result is considerable when compared with L-sorbose concentration (21.7g/l) obtained from the fermentation with wild type strain of *Glucobacter suboxydans*.

서 론

D-sorbitol과 L-sorbose는 Vitamin C의 생성에 있어서 중요한 중간물질일 뿐만 아니라 식품첨가물로서 많이 이용되어 이들 물질의 생물학적 생산공정 개발이 시급한 실정이다.
Zymomonas mobilis 세포는 glucose와 fructose를 기질로 이용하여 glucose-fructose oxidoreductase 효소에 의해서 sorbitol과 gluconic acid를 거의 동량 생산한다(1).

한편 휴지감자가(Jerusalem artichoke)는 β-1, 2-fructose oligomer 인 inulin을 약 12.1% (w/w) 정도 함유하고 있으며, 작물의 수용이 높고(10,000-13,000 lb/acre/year) 서리와 병충해에 강한 장점도 지니고 있다(2, 3) 또한 inulin을 산(4, 5) 또는 효소(6, 7)로 가수분해하야 천으로 생물학 방출이 생성되어 이들에 생성된 fructose는 Zymomonas mobilis에 의하여 D-sorbitol 생성의 기질로 이용될 수 있다.

Zymomonas mobilis 세포와 inulinas 효소를 chitin(5%, w/v)과 β-carrageenan(4%, w/v)에 동시에 고정화하여 D-sorbitol 생성의 가속화를 만들기새로 가수분해가 진행됨과 동시에 D-sorbitol이 생성되기 전에 c문경을 간소화시킬 수 있다.

한편 Gluconobacter suboxydans의 세포와막면에 membrane bound 형태로 존재하는 sorbitol dehydrogenase 효소는 D-sorbitol을 L-sorbos으로 전환한다(8). 그러나 D-sorbitol dehydrogenase는 20% 이상의 D-sorbitol 5%에서는 가설저해가 일어나며, Gluconobacter suboxydans는 gluconic acid의 농도가 40g/l 이 상에서는 성장과 sorbitol생성능력이 저해된다. 따라서 본 연구에서는 gluconic acid에 내성을 있는 G. suboxydans를 변이주를 선발하여 휴지감자를 원료로한 L-sorbos의 생성을 시도하였다.

재료 및 방법

군주 및 배지조성
본 실험에 이용된 군주는 Zymomonas mobilis ZM4(KCTC 3181)와, Gluconobacter suboxydans (KCTC 2111)이며, 배지로서 100g/1 glucose, 1g/l (NH4)2SO4, 1g/l MgSO4·7H2O, 1g/l KH2PO4 그리고 10g/l yeast extract를 Z. mobilis의 배양에 이용하였고, G. suboxydans 세포를 배양하기 위해서 50g/l D-sorbitol 10g/l peptone 그리고 5g/l yeast extract를 사용하였으며 배양온도 30°C, pH 5.0의 조건에서 n tary shaker를 250rpm의 속도로 교반하여 진탕배양하였다.

세포의 투과성 탐침
배양된 Z. mobilis 세포를 원심분리하여 얻어진 세포를 0.2% CTAB(Cetyltrimethylammoniumbro- mide)로 처리한 뒤 4°C에서 10분간 방치한 후 다시 원심분리하여 상용액을 천천히 세포를 0.3% glutaraldehyde 윤액으로 처리한 뒤 4°C에서 10분간 방치 후 0.1M KPi buffer 및 중류수로 세척하여 세포의 두께성을 향상시켰다.

퇴지감자즙의 제조 및 가수분해
퇴지감자를 수확하고 퇴지힌 분량을 증류수로 첨가하여 증류수를 만들었다. 1.2기압 121°C에서 15분간 살균한 후 0.1M filter paper(Advanced 5A)를 사용하여 filtration한 후 살균하였다. 생성된 휴지감자즙에 진탕항산을 첨가하여 pH를 2.0으로 맞추어 방과시킨 뒤 2N KOH를 이용하여 pH 6.0으로 조절하였다. 효소로 휴지감자즙에 inulins를 0.2ml (0.398%, v/v) 첨가하여 50°C에서 24시간 동안 변용시켰다.

효소와 세포의 동시고정화
Hsu와 Lockwood(9)의 방법에 따라서 chitin을 6N HCl로 처리한 뒤 0.1M acetate buffer(pH 5)로 수제하여 HCl을 제거하였다. 3% glutaraldehyde로 처리한 후 inulins을 혼합하여 1시간 동안 식은 뒤에서 분리한 뒤 4°C에서 24시간 보존한 후 사용하였다. 이를 투과성에 증가된 Zymomonas mobilis 세포와 혼합한 뒤, 증류수에 용해한 x-carrageenan과 혼합하였다. 10ml주사기 사용하여 20g/l KCl과 0.15g/l CaCl의 혼합 용액에 밀어들여서 read를 만들 후 1시간동안 교반한 뒤 0.1M KPi buffer로 수세하였다.

UV조사에 의한 동연변이 선발
고체배지에 G. suboxydans 세포를 배양하여 생성된 colony에 단파장 UV trans eliminator를 사용하여 15분에서 1시간까지 변이시켜 조사한 뒤, 생성된 세포를 150g/l의 gluconic acid가 포함되어 있는 고체배지에 도 máxima 후 성장한 세포를 동연변이의 규칙적으로 L-sorbos 생성에 사용하였다.

NTG처리에 의한 동연변이 선발
Goodman 등(10)의 방법에 의해서 G. suboxydans의 동연변이 균체를 선발하였다. NTG의 농도를 25 -200µg/ml으로 변화시키면서 실험하여, 대조 증식기 상태의 G. suboxydans에 25µg/ml의 NTG를 첨가하여 30분간 배양한 뒤 원심분리하였다. Pellet을 익체배지로 3회 세척한 뒤 gluconic acid
가 함유되어 있는 고체배지에 도발한 후 성장한 세포를 선발하였다.

분석 방법
Glucose, Fructose, D-sorbitol, L-sorbitol을 HPLC(model, Waters R401)로 분석하였으며, 이때 사용한 column은 Bio-Rad Carbohydrate HPX-87C였으며 85℃의 온도를 유지하여 주었다. solvent의 유효은 1.66ml/min이었다. 균체노도는 진조 공정으로 측정하였다.

결과 및 고찰

돼지간자즙의 가수분해

산 또는 inulinase를 이용하여 돼지간자즙을 가수분해하였다. 각각 농도에 따른 산 가수분해도를 측정하기 위하여 40%(v/w, water/Jerusalem artichoke tubers), 50%(v/w), 70%(v/w) 및 100%(v/w)의 돼지간자즙을 만든 후 각각의 졸의 pH를 2.0으로 고정한 가수분해를 하였다. 그 결과, 40%의 경우에 glucose와 fructose의 수율이 각각 17.3, 37.7로서 최대값을 나타냈다.

온도에 따른 가수분해도를 측정하기 위하여 40%(v/w)의 돼지간자즙을 50℃, 70℃, 85℃에서 각각 가수분해 하였다. 그 결과 Fig. 1에 나타났듯이 85℃에서 가수분해가 가장 빠르게 일어났다.

산과 inulinase에 의한 가수분해도를 비교하기 위하여 40%(v/w)의 돼지간자즙을 사용하여 inulinase에 의한 가수분해 실험을 시행한 결과 0.2ml(0.398%, v/v)의 inulinase를 첨가하여 50℃에서 24시간 반응시켰을 때 가능분해도가 가장 높았다(Table 1). 산

Table 1. Hydrolysis of Jerusalem artichoke juice(40%, v/v) by inulinase. Reaction was carried out for 24h at 0℃. 50ml of juice was used for enzyme hydrolysis.

<table>
<thead>
<tr>
<th>Inulinase loaded(ml)</th>
<th>Concentration of liberated sugars(g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glucose</td>
</tr>
<tr>
<td>0.20</td>
<td>36.7</td>
</tr>
<tr>
<td>0.48</td>
<td>33.8</td>
</tr>
<tr>
<td>0.75</td>
<td>30.9</td>
</tr>
<tr>
<td>1.00</td>
<td>31.0</td>
</tr>
</tbody>
</table>

Fig. 1. Liberation of sugars by acid hydrolysis from 50ml of 40%(v/w, water/Jerusalem artichoke tubers) Jerusalem artichoke juice at various temperatures.

에 의한 가수분해에 비하여 inulinase에 의한 가수분해 비율의 total sugar 생성이 약 1.6배 높았으며 최대 122.0g/1의 total carbohydrate가 생성되었다. 이때의 glucose와 fructose의 생성비율은 각각 3:7이었다.

D-Sorbitol 생산조건의 최적화
Aspergillus ficuum으로부터 추출한 inulinase의 최적 반응 온도는 60-65℃이고(11), fructose를 D-sorbitol로 전환하는 glucose-fructose oxidoreductase의 최적온도와 pH는 각각 38℃, 6.2로서 (12) 서로 상이하므로 두 분산의 동시에고정화를 위해 새로운 최적조건이 요구되었다. 40%(v/w)의 돼지간자즙 50ml에 0.2ml의 inulinase와 3g의 두유가 함유된 Z. mobilis세포를 첨가시키고, 온도를 32℃에서 41℃까지 변화시켜서 D-sorbitol의 생성량을 조사한 결과 반응 온도 38℃에서 최대 15.2g/1의 D-sorbitol이 생성되었고 pH를 5.5에서 7.0까지 변화시킨 반응에서는 pH 6.2에서 최대 25g/1의 D-sorbitol이 생성되었다.

D-sorbitol은 fructose로부터 glucose-fructose oxidoreductase에 의한 환원작용으로 생성되므로 이때 전자 공여체로서 glucose가 필요하며 glucose와
Table 2. D-sorbitol formation from 50ml of Jerusalem artichoke juice (40%, v/w) containing additional glucose.

<table>
<thead>
<tr>
<th>Glucose added (g/l)</th>
<th>Sorbitol conc. (g/l)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>28.0</td>
<td>39.0</td>
</tr>
<tr>
<td>45</td>
<td>33.0</td>
<td>40.4</td>
</tr>
<tr>
<td>55</td>
<td>35.6</td>
<td>41.3</td>
</tr>
<tr>
<td>65</td>
<td>36.1</td>
<td>39.4</td>
</tr>
</tbody>
</table>

*Reactions were carried out with 0.2ml each of inulinase and Z. mobilis cells at 38°C and pH 6.2. Samples were taken after 13th reaction.

fructose의 양에 동일할때 최대량의 D-sorbitol을 얻을 수 있다(). 그러나 배지감자즙의 가수분해시켜 glucose와 fructose의 생성능도가 상이하므로 추가 적으로 glucose를 참가하였으며 이때 참가한 glucose의 농도를 35g/1에서 65g/1까지 변화시켜서 실험한 결과 glucose의 농도가 55g/1일때 41.3%의 전환율을 얻을 수 있었다(Table 2).

Zymomonas mobilis 세포와 inulinase의 동시 고정화
페지감자즙의 가수분해와 이때 생성된 fructose로부터 Z. mobilis에 의한 D-sorbitol의 생성을 1단계
에서 일어나게하기 위해서 inulinase와 두가성이
상상된 Zymomonas mobilis를 동시 고정화 하였다. 반응기로서는 최본식 반응기를 사용하였으며 pH와 온도는 각각 6.2, 38℃로 고정하였다. 반응기내의 배지 감자즙의 양은 80ml이었으며 반응결과 30.2g/1의
D-sorbitol이 생성하였다(Fig. 2). 이때의 전환율은 total fructose를 기준으로 계산하여 32.9%이었다.

L-sorbosе의 생성에 미치는 응존산소의 영향
Sorbitol dehydrogenase는 세포막 층 주 membrane bound 형태로 존재하며 세포막의 전자전달계
와 연계되어 있어, D-sorbitol의 L-sorbosе로의 전환은 공극적으로 산소에 의한 산화작용으로 불 수
있으므로 응존 산소농도가 L-sorbosе 생성 효율에 미치는 영향을 조사하였다. 1.5g/l 내외의 균체를
사용하여 반응조에 응존산소의 포화도를 10-40%까
지 변화시키면서 실험한 결과 Fig. 3에 나타났듯이 응존산소 농도가 40%일때 최대치의 L-sorbosе 농
도를 나타내어 D-sorbitol의 L-sorbosе로의 전환은 산소 요구량이 높은 반응임을 확인할 수 있었다.

Fig. 2. D-sorbitol formation by coimmobilized inulinase and permobilized Z. mobilis at 38°C and pH 6.2. Inulinase and glucose loaded were 30ml and 55g/1, respectively, in 80ml of Jerusalem artichoke juice [40% (v/w)].

Fig. 3. Conversion of D-sorbitol to L-sorbosе at different levels of dissolved oxygen concentration. Reactions were made with 1.5g cell/1 and D-sorbitol/1.
L-sorbitose 생성에 미치는 D-sorbitol 및 gluconic acid의 영향

Z. mobilis에 존재하는 Glucose-fructose oxidoreductase에 의해 glucose는 gluconic acid로, fructose는 D-sorbitol로 전환되며 D-sorbitol과 gluconic acid는 D-sorbitol의 비도량 생성된다. 이와같이 생성된 생성물중 D-sorbitol은 Gluconobacter suboxydans 세포에 의해서 L-sorbitose로 전환될 수 있다. D-sorbitol의 농도 변화에 따라서 세포의 성장 및 L-sorbitose생성에 기해를 일으키는지 알아보기 위하여 D-sorbitol의 농도를 5%에서 30% 사이에서 변화시키면서 발효시켜 L-sorbitose 생성에 미치는 D-sorbitol 농도의 영향을 조사하였다(Table 3). 각 농도에 있어서 10%가지는 100% 가까운 전환율을 도달하고 있으나 20%와 30%의 경우 전환율이 약 40%정도에 불과하였다. 따라서 20%이상의 D-sorbitol 농도에서는 기체에 대한 저해가 일어나 L-sorbitose생성은 억제될음을 알 수 있었다.

Gluconic acid는 D-sorbitose 생성에 미치는 영향을 조사하기 위하여 gluconic acid의 농도를 0-140g/l까지 변화시키면서 Gluconobacter suboxydans의 L-sorbitose 발효를 행하였다. 반응기내의 pH를 5.0으로 조절하였을 때 gluconic acid 40g/l까지는 균체의 성장이 잘 되었으며 60g/l의 L-sorbitose가 생성되었다. 그러나 gluconic acid의 농도가 40g/l 이상에서는 세포의 성장 및 L-sorbitose 생성이 저해되었다(Fig. 4, Table 4). 참가한 Gluconic acid의 농도가 증가함에 따라서, L-sorbitose의 양과 dry cell weight가 각각 78g/l에서 28g/l로 25g/l에서 0.9g/l로 감소하였으며, 비중식속도(μ)값은 0.020에서 0.012까지 그리고 Y_w와 전환율은 각각 0.70에서 0.389, 100%에서 39.88%로 감소하였다.

Gluconic acid에 대한 free cell과 resting cell과의 저해효과를 비교하기 위하여 0-5%까지 glucon-

Table 3 Kinetic parameters for L-sorbitose formation with different level of D-sorbitol concentrations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-sorbitol conc(g/l)</td>
<td>0.00</td>
<td>7.10</td>
<td>106.10</td>
<td>140.20</td>
</tr>
<tr>
<td>L-sorbitose conc(g/l)</td>
<td>43.59</td>
<td>74.85</td>
<td>82.35</td>
<td>72.24</td>
</tr>
<tr>
<td>D.C.W.(g/l)</td>
<td>2.47</td>
<td>2.24</td>
<td>2.48</td>
<td>2.10</td>
</tr>
<tr>
<td>O.D. at 660nm</td>
<td>1.32</td>
<td>1.04</td>
<td>1.08</td>
<td>1.11</td>
</tr>
<tr>
<td>Conversion eff. (%)</td>
<td>100.00</td>
<td>93.82</td>
<td>43.70</td>
<td>33.99</td>
</tr>
<tr>
<td>μ (h⁻¹)</td>
<td>0.043</td>
<td>0.019</td>
<td>0.019</td>
<td>0.015</td>
</tr>
<tr>
<td>Y_w</td>
<td>0.049</td>
<td>0.023</td>
<td>0.023</td>
<td>0.020</td>
</tr>
<tr>
<td>Y_v</td>
<td>0.849</td>
<td>0.732</td>
<td>0.795</td>
<td>0.640</td>
</tr>
<tr>
<td>q_w</td>
<td>0.169</td>
<td>0.315</td>
<td>0.315</td>
<td>0.555</td>
</tr>
<tr>
<td>q_v</td>
<td>0.147</td>
<td>0.335</td>
<td>0.227</td>
<td>0.287</td>
</tr>
</tbody>
</table>

* Reaction was max at 30°C and pH 5.0 for 90h.
Otherwise, sample were taken after 120h of reaction.

Fig. 4. L-sorbitose formation with various gluconic acid concentrations(g/l) at 30°C and pH 5.0.

Table 4. L-sorbitose formation at various gluconic acid concentrations.

<table>
<thead>
<tr>
<th>Kinetic parameters</th>
<th>0</th>
<th>40</th>
<th>80</th>
<th>100</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluconic acid loaded(g/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ(h⁻¹)</td>
<td>0.020</td>
<td>0.015</td>
<td>0.018</td>
<td>0.012</td>
<td>0.015</td>
</tr>
<tr>
<td>Y_w</td>
<td>0.022</td>
<td>0.015</td>
<td>0.016</td>
<td>0.016</td>
<td>0.015</td>
</tr>
<tr>
<td>Y_v</td>
<td>0.700</td>
<td>0.560</td>
<td>0.489</td>
<td>0.396</td>
<td>0.389</td>
</tr>
<tr>
<td>Conversion efficiency</td>
<td>100.0</td>
<td>82.08</td>
<td>56.62</td>
<td>42.87</td>
<td>39.88</td>
</tr>
</tbody>
</table>

* Reaction was made at 30°C and pH 5.0 for 130h and used the flask culture method. 50g/l of D-sorbitol was added to media.
Fig. 5. Effect of gluconic acid on the conversion of D-sorbitol to L-sorbos by Gluconobacter suboxydans resting cell.

Gluconic acid 대입 풀연변이주 선발

G. suboxydans에 의한 D-sorbitol의 L-sorbos로의 전환반응 효율을 높이기 위해 gluconic acid내성 변이주의 선발을 시도하였다. 우선 NTG의 최적 농도를 정하기 위해서 25-200 μg/ml까지 변화시키며 실험한 결과 100 μg/ml이 상이 되면 세포가 대부분 사멸하였고, 25 μg/ml의 NTG처리시 세포의 성장 및 돌연변이율이 높음시 확인되었다. NTG로 세포를 처리한 후 100g/l의 gluconic acid가 함유된 선택배지에 도말하여 5장된 세포를 다시 NTG(25μg/ml)로 처리하여 1.0g/l의 gluconic acid가 함유되어 있는 선택배지에 도말하여 성장한 세포를 돌연변이 귀체로 선발하였다. 선택배지에서 성장한 돌연변이 귀체를 100g/l의 gluconic acid와 100g/l의 D-sorbitol이 함유된 방조액에 배양온도 30℃, pH 5.0 교반속도 250rpm 공기 주입속도 3vvm의 조건에서 110시간 배양한 후 40.1g/l의 L-sorbos가 생성되어 49.2%로 전환율을 나타내었다(Fig. 6). 이는 wild type의 21.8%에 비하여 2.25배 높은 값이었다. μ, Yₚ, Yₚ/μ, qₛ 그리고 qₛ값은 각각 0.017, 0.013, 0.027 0.654h⁻¹, 그리고 0.467h⁻¹이었다. G. suboxydans의 경우 U, V 조사에 의한 돌연변이 귀체에 비해 NTG 처리에 의한 돌연변이 귀체가 L-sorbos생성에 더 효과적이었다.

Fig. 6. Conversion efficiency of D-sorbitol to L-sorbos with wild type and the mutant obtained by NTG mutagenesis. 100g/l of gluconic acid was added to media containing 100g/l D-sorbitol.

요 약

Z. mobilis와 G. suboxydans 두 균주를 사용하여 D-sorbitol과 L-sorbos로 β-1, 2-fructose oligomer을 함유하고 있는 베지감자로부터 생산하기 위한 실험을 행하였다. Inulinase(0.398%)에 의해 베지감자즙(40%, w/v)으로부터 glucose와 fructose가 각각 36.7g/l, 85.3g/l이 생성되었다. 이 생성물은 D-sorbitol과 L-sorbos의 기질로 이용하였다.

Inulinase와 무과성이 병합된 Z. mobilis를 chitin (5%, w/v)과 x-carrageenan(4%, w/v)을 사용하여 동시에 고정화 하였다. 이때 30.2g/l의 D-sorbitol이 생성되었으며, 32.9%의 전환율을 나타냈다. G. suboxydans에 의한 D-sorbitol에서 L-sorbos로의 전환에 있어서 기질의 농도, 용존 산소농도 및 gluconic acid 농도의 영향을 조사하였다. D-sorbitol의 농도가 200g/l이상이 되면 12시간의 반응시간이 경과되어도 43.7%의 전환율을 나타내어 기질의 저해가 일어날 것으로 확인하였다. Z. mobilis에 의해서 glucose로부터 생성된 gluconic acid는 G. suboxydans의 성장 및 L-sorbos로의 전환을 저해하였다. 이러한 저해작용을 체계하기 위해서 NTG처리에 의한
방법을 사용하여 돌연변이균체를 선발하였으며, 이 균체를 사용하였을 때 100g/1의 gluconic acid와 100g/1의 D-sorbitol이 함유되어 있는 발효주에서 40.1g/1의 L-sirbose가 생성되어 49.2%의 전체율을 나타냈고, 이는 wild type의 21.8%에 비해서 2.3배 높은 값이다.

참고문헌
